Utilizamos cookies para comprender de qué manera utiliza nuestro sitio y para mejorar su experiencia. Esto incluye personalizar el contenido y la publicidad. Para más información, Haga clic. Si continua usando nuestro sitio, consideraremos que acepta que utilicemos cookies. Política de cookies.

Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Software de detección de lesiones basado en IA detecta nódulos pulmonares incidentales en radiografías de tórax

Por el equipo editorial de MedImaging en español
Actualizado el 06 Dec 2023
Imagen:  INSIGHT CXR de Lunit detecta 10 hallazgos radiológicos anormales con una precisión del 97-99 % (Fotografía cortesía de Lunit)
Imagen: INSIGHT CXR de Lunit detecta 10 hallazgos radiológicos anormales con una precisión del 97-99 % (Fotografía cortesía de Lunit)

En el campo de la radiología, la inteligencia artificial (IA) ha logrado avances significativos, particularmente en el desarrollo de software de detección de lesiones basado en IA para radiografías de tórax. Estos avances han demostrado ser eficaces en entornos del mundo real, incluidos los departamentos de emergencia, exámenes de detección de cáncer de pulmón y clínicas respiratorias. Sin embargo, se ha explorado menos el impacto de la IA en la identificación de nódulos pulmonares inesperados en pacientes que inicialmente no presentan problemas relacionados con el pecho. Ahora, un nuevo estudio ha demostrado que un software de detección de lesiones basado en IA puede ser fundamental en la práctica médica diaria, especialmente para detectar nódulos pulmonares incidentales clínicamente significativos en las radiografías de tórax.

Un grupo de investigadores de la Facultad de Medicina de la Universidad de Yonsei (Gyeonggi-do, Corea del Sur) utilizó Insight CXR, v3 de Lunit (Seúl, Corea del Sur) para evaluar con qué frecuencia se detectaban inesperadamente nódulos pulmonares clínicamente significativos en las radiografías de tórax y si los hallazgos coexistentes pueden ayudar en el diagnóstico diferencial. Este software está destinado a ayudar en la interpretación de radiografías de tórax posteroanterior y anteroposterior. Es capaz de detectar diversas lesiones como nódulos, neumotórax, consolidación, atelectasias, fibrosis, cardiomegalia, derrame pleural y neumoperitoneo. Cuando a un paciente se le realiza una radiografía de tórax, el software procesa automáticamente la imagen y agrega un archivo secundario a la imagen original en el Sistema de comunicación y archivo de imágenes (PACS) del hospital. Luego, los médicos pueden consultar el análisis de IA, que se presenta con un mapa de contorno, abreviaciones y una puntuación de anomalía.

En su estudio, el equipo revisó los resultados de imágenes de 14.563 pacientes a quienes se les realizaron radiografías iniciales de tórax en clínicas ambulatorias. Tres radiólogos clasificaron los nódulos en cuatro categorías: malignidad (grupo A), inflamación activa o infección que requiere tratamiento (grupo B), secuelas postinflamatorias (grupo C) y otras afecciones (grupo D). El software identificó lesiones cuando su puntuación de anormalidad era superior al 15 %. Los hallazgos revelaron que el software de IA detectó inesperadamente nódulos pulmonares en 152 pacientes (1 %). De estos, 72 pacientes fueron excluidos por falta de imágenes de seguimiento y siete fueron excluidos por no recibir un diagnóstico clínico concluyente.

En el análisis final de los 73 pacientes restantes, la tasa de falsos positivos fue del 30,1 %. El desglose mostró que el 11 % tenía malignidad, el 6,9 % tenía inflamación activa, el 49,3 % tenía secuelas postinflamatorias y el 2,7 % entraba en otras categorías. Esto sugirió que alrededor del 20,6 % de los nódulos pulmonares incidentales en los grupos A, B y D requirieron evaluación o tratamiento adicional. Los investigadores reconocieron que su estudio no proporcionó datos completos sobre la detección y el tratamiento de nódulos pulmonares cuando utiliza software basado en IA. Esto se debió en parte a que los médicos de su hospital tenían la discreción de consultar los resultados de la IA a su conveniencia, lo que dificultaba determinar la influencia exacta de la IA en la toma de decisiones clínicas. Sin embargo, el equipo planea investigar más a fondo estos aspectos en futuras investigaciones.

"Nuestros resultados mostraron que la IA detectó inesperadamente nódulos pulmonares en aproximadamente el 1 % de las [radiografías de tórax] iniciales, y aproximadamente el 70 % de estos casos fueron nódulos verdaderamente positivos, mientras que el 20,5 % requirió tratamiento clínico", señaló la autora principal Shin Hye Hwang, MD.

Enlaces relacionados:
Facultad de Medicina de la Universidad de Yonsei
Lunit

Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Miembro Oro
Ultrasound System
FUTUS LE
Portable DR Flat Panel Detector
VIVIX-S 1012N
Afterloader For Brachytherapy
Flexitron

Canales

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Ultrasonido

ver canal
Imagen: la herramienta de ultrasonido pulmonar impulsada por IA superó a los expertos humanos en un 9 % en el diagnóstico de tuberculosis (Adobe Stock)

La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis

A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.