Presenta Sitios para socios Información LinkXpress
Ingresar
Publique su anuncio con nosotros
GLOBETECH PUBLISHING LLC

Deascargar La Aplicación Móvil




Investigadores usan aprendizaje automático para aumentar la resolución de las imágenes por TCO

Por el equipo editorial de MedImaging en español
Actualizado el 09 Oct 2019
Los ingenieros biomédicos de la Universidad de Duke (Durham, NC, EUA) idearon un método para aumentar la resolución de la tomografía de coherencia óptica (TCO) a una escala de una sola micra en todas las direcciones. Más...
La nueva técnica, llamada tomografía de refracción de coherencia óptica (TRCO), podría mejorar las imágenes médicas obtenidas en la industria multimillonaria de la TCO para campos médicos que van desde la cardiología hasta la oncología.

La TCO es una tecnología de imagenología análoga a la ecografía, que utiliza luz en lugar de ondas de sonido. Una sonda dispara un haz de luz sobre un tejido y, en función de los retrasos de las ondas de luz a medida que se recuperan, se determina los límites de las características internas. Para obtener una imagen completa de estas estructuras, el proceso se repite en muchas posiciones horizontales sobre la superficie del tejido que se escanea.

Dado que la TCO proporciona una resolución de profundidad mucho mejor que la dirección lateral, funciona mejor cuando estas características contienen principalmente capas planas. Cuando los objetos dentro del tejido tienen formas irregulares, las características se vuelven borrosas y la luz se refracta en diferentes direcciones, reduciendo la calidad de la imagen. Los intentos anteriores para crear imágenes de TCO con alta resolución lateral se basaron en la holografía, que mide minuciosamente el complejo campo electromagnético reflejado desde el objeto. Si bien esto se ha demostrado, el método requiere que la muestra y el aparato de imagenología permanezcan perfectamente quietos hasta la escala nanométrica durante toda la medición.

Sin embargo, los ingenieros biomédicos de la Universidad de Duke tomaron un enfoque diferente. En lugar de confiar en la holografía, los investigadores combinaron las imágenes de TCO adquiridas desde múltiples ángulos para extender la resolución de profundidad a la dimensión lateral. Sin embargo, cada imagen TCO individual se distorsiona por la refracción de la luz a través de irregularidades en las células y otros componentes del tejido. Con el fin de poder compensar estos caminos alterados al compilar las imágenes finales, los investigadores debían modelar con exactitud la forma cómo se dobla la luz a medida que pasa a través de la muestra.

Para lograr esta hazaña computacional, los ingenieros biomédicos desarrollaron un método utilizando la “optimización basada en gradiente” para inferir el índice de refracción dentro de las diferentes áreas de tejido en base a las imágenes de múltiples ángulos. Este enfoque determina la dirección en la que se debe ajustar la propiedad dada, en este caso, el índice de refracción, para crear una mejor imagen. Después de varias iteraciones, el algoritmo crea un mapa del índice de refracción del tejido que compensa mejor las distorsiones de la luz. El método se implementó utilizando TensorFlow, una biblioteca de software popular creada por Google para aplicaciones de aprendizaje profundo.

Para los experimentos de prueba de concepto, los investigadores tomaron muestras de tejido como la vejiga o la tráquea de un ratón, las colocaron en un tubo y rotaron las muestras 360 grados debajo de un escáner de TCO. El algoritmo creó con éxito un mapa del índice de refracción de cada muestra, aumentando la resolución lateral del escaneo en más de un 300% y reduciendo el ruido de fondo en la imagen final. Si bien el estudio utilizó muestras ya extraídas del cuerpo, los investigadores creen que se puede adaptar la TRCO para trabajar en un organismo vivo.

“Una de las muchas razones por las que este trabajo me parece emocionante es que pudimos tomar prestadas herramientas de la comunidad de aprendizaje automático y aplicarlas no solo para procesar imágenes de TCO, sino también para combinarlas de una manera novedosa y extraer nueva información”, dijo el investigador, Kevin Zhou. “Creo que hay muchas aplicaciones de estas bibliotecas de aprendizaje profundo como TensorFlow y PyTorch, fuera de las tareas estándar como la clasificación y segmentación de las imágenes”.

Enlace relacionado:
Universidad de Duke


Miembro Oro
Electrode Solution and Skin Prep
Signaspray
Miembro Oro
Ultrasound System
FUTUS LE
Radiology System
Riviera SPV AT
Mobile Radiographic System
XJET
Lea el artículo completo al registrarse hoy mismo, es GRATIS! ¡Es GRATUITO!
Regístrese GRATIS a MedImaging.es y acceda a las noticias y eventos que afectan al mundo de la Radiología.
  • Edición gratuita de la versión digital de Medical Imaging Español enviado regularmente por email
  • Revista impresa gratuita de la revista Medical Imaging Español (disponible únicamente fuera de EUA y Canadá).
  • Acceso gratuito e ilimitado a ediciones anteriores de Medical Imaging Español digital
  • Boletín de Medical Imaging Español gratuito cada dos semanas con las últimas noticias
  • Noticias de último momento enviadas por email
  • Acceso gratuito al calendario de eventos
  • Acceso gratuito a los servicios de nuevos productos de LinkXpress
  • Registrarse es sencillo y GRATUITO!
Haga clic aquí para registrarse








Canales

Radiografía

ver canal
Imagen: la evaluación FFR impulsada por IA es comparable a la evaluación convencional (foto cortesía de 123RF)

Técnica de imágenes con IA se muestra prometedora en la evaluación de pacientes para ICP

La intervención coronaria percutánea (ICP), también conocida como angioplastia coronaria, es un procedimiento mínimamente invasivo en el que se insertan pequeños tubos... Más

RM

ver canal
Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

Herramienta de IA rastrea la eficacia de tratamientos para la esclerosis múltiple mediante RM cerebral

La esclerosis múltiple (EM) es una enfermedad en la que el sistema inmunológico ataca el cerebro y la médula espinal, lo que provoca alteraciones en el movimiento, la sensibilidad y la cognición.... Más

Ultrasonido

ver canal
Imagen: la herramienta de ultrasonido pulmonar impulsada por IA superó a los expertos humanos en un 9 % en el diagnóstico de tuberculosis (Adobe Stock)

La ecografía pulmonar asistida por IA supera a expertos humanos en el diagnóstico de tuberculosis

A pesar de la disminución global de las tasas de tuberculosis (TB) en años anteriores, su incidencia aumentó un 4,6% entre 2020 y 2023. La detección temprana y el diagnóstico rápido son elementos esenciales... Más

Medicina Nuclear

ver canal
Imagen: COX-2 en la materia gris cortical humana (foto cortesía de The Journal of Nuclear Medicine; DOI: https://doi.org/10.2967/jnumed.124.268525)

Nuevo enfoque de imágenes PET ofrece una visión nunca antes vista de la neuroinflamación

La COX-2, una enzima clave en la inflamación cerebral, puede aumentar significativamente su expresión mediante estímulos inflamatorios y neuroexcitación. Los investigadores... Más

TI en Imaginología

ver canal
Imagen: La nueva Medical Imaging Suite hace que los datos de imágenes de atención médica sean más accesibles, interoperables y útiles (Fotografía cortesía de Google Cloud)

Nueva suite de imágenes médicas de Google Cloud hace los datos de imágenes médicas más accesibles

Las imágenes médicas son una herramienta fundamental que se utiliza para diagnosticar a los pacientes, y cada año se escanean miles de millones de imágenes médicas en... Más
Copyright © 2000-2025 Globetech Media. All rights reserved.